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Module Learning Goals m

Laboratories

A Understand why you might want to perform uncertainty
guantification (UQ)

A Understand prerequisites arfthve a practical process for UQ
at your disposal

A Be able to formulate your problem, present it to Dakota, and
run and understand studies

A Be able toselectan appropriateDakotaUQ method

A Know how to use Dakota UQ results




Module Outline
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A Introduction: application examples to define UQ, illustrate the UQ
process, and explain why you might care

A UQ terminology: characterizing and expressing your problem to Dakota

A Monte Carlo sampling for UQ

A Exercise: Dakota input and output for Monte Carlo sampling

A Selecting an uncertainty quantification method; reliability and polynomial
chaos

A Exercise: Comparing UQ methods and problem assumptions

A Beyond Dakota: followen activities using UQ results

A Summary of advanced topics and references




Why Uncertainty Quantification? m.
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A What?Determine variability, distributions, statistics of code outputs,
given uncertainty in input factorgut error bars on simulation output

A Why?Tactically, assess likelihood of typical or extreme outcon@sen
Ay LIz dzy OSNI I Ay deéX
A Determine mean or median performance of a system
A Assess variability or robustness of model response
A Find probability of reaching failure/success criteria (reliability metrics)
A Assess range/intervals of possible outcomes
A Ultimately, use simulations for riskformed decision making.g., assess
how close uncertaintendowed code predictions are to

A Experimental data
(validation,is modelsufficient
for the intended applicatiofl)

A Performance expectations or limits
(quantificationof margins and
uncertalntles; QMU) Temperature [deg C]
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Example: =
Thermal Uncertainty Quantification ) b,

A Device subject to heatin@xperiment or
corresponding computationaimulation)

A Uncertainty in composition/ environment
(thermal conductivity, density, boundary),

parameterized by,> Ux > o
A Response temperaturu)=T(y= ux)>
calculated by heat transfer code

Given distributions of & X,z UQ
methods calculate statistical info o

outputs:

i wMean(T), standard deviatiom),
ProbabilityT T, itica)
wProbabilitydistribution of
temperatures

cBounds on temperature (min/max
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Example:
MEMS Manufacturing Uncertainty A i,

Laboratories

Ve

A Micro-electromechanical system (MEM§)pically made
from silicon, polymers, or metals; used as misgale sensors, '
actuators switches, and machines

MEMSdesigns: subjedb substantialvariability,lackhistorical knowledgdase
uncertainty from materials, micromachininghoto lithographygtching process

Resulting part yields can be low or have poor cycle durability

Goal:UQ with finiteelement model obi-stabled g A § OK (i 2 X
A Assess reliabilitin predicted actuation force and variability in min/max force

Ve

A Minimize sensitivity to uncertainties (robustness)

actuation force

>

v

uncertain parameters:

anchors edgebias and residuadtress

variable mean std. dev. | distribution

A -0.2 pm 0.08 normal
5, -11 Mpa 4.13 normal

bistable
MEMS
switch




Example: Uncertainty in Boiling Rate In
Nuclear Reactor Core (DOE CASL) ) i

Laboratories

A Use nuclear reactor thermdiydraulics model t@ssess uncertainty in
localized boiling due to variable operating conditions

A Compare Dakota UQ approaches and modelling assumptions

ME nnz ME meannz ME max
Mean Std Mean Std Mean Std
Method Dev Dev Dev

LHS (40) 651.225( 297.039| 127.836( 27.723 | 361.204| 55.862
LHS (400) 647.33 | 286.146( 127.796| 25.779 [ 361.581| 51.874
LHS (4000) | 688.261| 292.687 | 129.175| 25.450 [ 364.317| 50.884
PCE ( U{ 687.875| 288.140| 129.151 25.7015| 364.366| 50.315
PCE (U] 688.083| 292.974| 129.231 25.3989| 364.310| 50.869
PCE (U] 688.099]| 292.808| 129.213| 25.4491( 364.313| 50.872

mean and standard deviation of key metrics

ME_nnz
Moments
Mean £88.261
Std Dev 292 68724
Std Err Mean 4 6277918
e o Upper 95% Mean  697.33405 ) o ]
Lower S6% Mean 67,1275 anisotropic uncertainty
G‘”i”l"”‘“g‘?'”?t“ajgg-‘f:a’g out 4 not i distribution in boiling rate
normally distriouted Inputs neea no glvev thrOU_ghOUt quarter,coremodel

NAAS G2 y2N¥YIffte R)\éﬂNmédzusgsidg\%%udzuéx




Discussion:
Uncertainties in Your Domain ) i

Laboratories

A Whatare the key uncertainties that affect your experiments,
analysisandwork products?

A How do you account for them when using science and
engineering computational models?




A Practical Process for UQ m

Laboratories

1. Determine your UQ analysis goal
A What are the key model responses (quantities of interest)
A What kinds of statistics or metrics do you want on them?
2. ldentify potentially influential uncertain input parameters

A Includes parameters that influence trend in response as well as those that influence
variability in response

3. Characterize input uncertainties and map them into Dakota variable
specifications

4. \What are the model characteristics/behaviors? Recall: covered in

A Simulation cost, model robustness, input/output properties such as kinkcs)fher modules

discontinuities, multimodal, noise, disparateegimes
5. Select a method appropriate to variables, goal, and problem
6. Set up Dakota input file and interface to simulation

7. Run study and interpret the results

Up next: Discuss 1, 2 and 3, relate to Dakota, and see a simple example|of 6, 7




Familiarize Yourself with Key Statistics Ideags

Moments of Random Variables

Understandinghe followingbasic concepts wilelp with DakotdJQ

r

A Concept of a random variab}

A Mean fn, >): expected or average
value ofX, e.g., mean of sample of

. 50
size N: 1.}
[ LI | 0
m — a I (u ) <0 0 10 20 30 40 50 60 70 BO 90 100110 120 130 140 150 160 170 180 190 200 210 220 230+

m
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realizations of random variables
with mean>=100, standard
deviation(1=10, 1=50

A Standard deviations( ): measure
of dispersion / variability oX: manufactured edge has a

1 X [ i ]2 mean bias 0f0.2>m, with
5t = ﬁg Tu)-m standard deviation 0.08m:
T

€

-0.36 -0.28 -0.2 -0.12 -0.04

In the earlier MEMS application, the

edge bias




Familiarize Yourself with Key Statistics Ideags

PDFs, CDFs, Intervals ) e
Understandinghe followingbasic concepts wilelp with DakotdJQ
A Probability density / probability /\ i i
mass functionrelative likelihood ;! /\\ B ] 1
of a given value oX = |02 | ‘
. _ L _ probability density probability
A Cumulative distribution function: functions mass function
probability thatXwill take on a Mo A1 70 ]
value less than or equal ta “He, = / % T |
: E 3 4 | cumulative
A& / /7 | distribution
/)| | functions

A Intervalvalued uncertaintyXcan
take on any value in the interval
[a,b], but no probability or
likelihood of one value vs. another

For the earlier thermal application,

a PDF or CDéan answer question

about the probability of exceeding|a
critical temperature.




Dakota Uncertainty Quantification m.
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A Dakota UQ methods primarily focus fwtward propagation of parametric
uncertaintiesthrough a modeldetermine uncertainty in model output,
given uncertainty in input parameters

/ Uncertainty in input variablesi \ / Uncertainty \
in output f(u)

. variability,
[ [ ] ] 4’| Coml\ﬁg;agllonall_' probabilities,
[ ] intervals (ranges),

intervals belief/plausibility,

\probability densities / \ etc. /

A Example uncertain inputghysics parametersnaterial properties
boundary/initial conditions, operating conditions, model choice, geometry

Ally |fa2 LISNF2NY GAYOSNBRS ! vée (2
consistent with data (not covered in this module)
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Categories oncertainty

This distinction can help in selecting Dakota variable types and method

A Aleatory(think probability density function, frequency; sufficient data)
A Inherent variability (e.g., in a population), type stochastic
ALNNBRdAzZOAOGE SY FTdAdzNIKSNJ (Y26 3S
A Ideally simulation would incorporate this variability

A Epistemiqe.g.,boundedntervals, distribution with uncertain parameters)
A Subjective, typeB, state of knowledgancertainty

A Reducible more data orinformation, would [ ]
make uncertaintyestimation moreprecise [ 1

A Fixed value in simulation, e.g., elastic [ ]
modulus, but not well known for this material [

See separate coursgm motivation for aleatorys. epistemic uncertainty
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Characterizing Uncertainties to Dakot%)

A adzali OKIFI NI OGSNARAI S SIOK @I NARIFIOf SQ2
correlation between pairs of variablesleed not be normal (or uniform)!

A May require processing data with math/stats tool to fit distributions,
performing literature searches, or querying experts

T T T T T " T 20 T | T ‘
w0, o N

|
|
|

10 T T T T T T T
_t normal heo. oi-10 —
T |pe=0, 0?=50, = L5 -
r p=-2, @*=05—| | | i’_j— 0.30f ‘ ) g 2
08 — ! ‘ o=112 o025t | A=10 ]
—o=1/4 x \ -
r /\ 1 1o — o=l 1 % 020} Le { =
04 \ a 0.15| /JI/ i .
02 05 1 o10f /| 1
AN | = -
L] o / N P N W S — — 0.00L2 oo
s 4 a9 =2 1 o0 1 2 3 4 8 00 05 10 15 20 25 20 o 5 10 15 20 = - - - - —
X " -3 -2 -1 0 1 2 3

Dakotauncertain variablaypes:

0.40

lognormal 03°1 Poisson °»-! | "] histogram

(Pp.a?(x)

A Aleatory continuousnormal, lognormal, uniformipguniform, triangular,
exponential, beta, gamm&umbel, Frechet Weibull, histogram

A Aleatory discretePoisson, binomial, negative binomial, hypergeometric,
histogram point (integer, real, string)

A Epistemiccontinuous interval, discrete interval, discrete set
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Specifying Dakota Uncertain Variable%)

variables
A UQ problems are specified to normal_uncertain 1
) ) ) descriptors  'density’
Dakota usingincertain variables means 8.1
(keywords*_uncertain ) std_deviations 1.7
, . . lognormal_uncertain 1
A Typ|Ca”y generllESDOHSG descriptors ' specific_heat
functionsare used means 2.7
error_factors 1.1
poisson_uncertain
A . . descriptors fire_strength
A Thermal UQ exampleble_re IS a ambdas 15
possible Dakota input file fragment| nistogram_bin_uncertain 1
for the uncertain variable types descriptors ;foam—th‘Ck”ess |
. . num_pairs
shown on the Previous slide abscissas 2.53.03.54.0
counts 15 11 20 O
A See theReference Manual responses
variables sectiofor all variable response_functions 2 |
. descriptors 'pressure’ ‘temperature
types and their parameters



https://dakota.sandia.gov/sites/default/files/docs/6.3/html-ref/variables.html
https://dakota.sandia.gov/sites/default/files/docs/6.3/html-ref/variables.html

Workhorse UQ Method:
Monte Carlo Sampling
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A Sampling methoddraw (pseuderandom) realizations from the specified
input distributions, run the simulation, and calculate samgtigistics:
A Sample moments, min/max, empirical PDF/CDF, based on ensemble of calculations

o Ensemble™
of Inputs
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Monte Carlo sample /\
of two input variables e

M

Model

A Robusteven forcomplex, poorlybehavedsimulations
A Slow,though reliableconvergence: O@{?), (in theory) independenbf dimension
A Parallelismall samples are known at onset and can be evaluated concurrently
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Ensemble
of Outputs
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Latin Hypercub&ampling (LHS)
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A Dakota hasample_type optionsrandomandlhs
A LHSs recommended whepossible
A Better convergenceate andstability acrosseplicates
A Any followon studies must double the sample size 02 (0202102 02

A LHS (McKay and Conover): stratifiaddom " examplesquiprobable

sampling among equal probability bins for alD1 ~ Intervals foran LHS of size 5

: i . i on a normal random variable
projections of an rdimensional set cfamples
A two-dimensional LHS of size 5 Unif(])r_r? LHS designs of sizes 51a_nf| 10

G ° 1 ples = 1 * ples =
= H 0.8 A 0.8 S i A
S e :
% ° 06 ) 06 2
.. J
Qq ® 0.4 0.4
X

K A

@ 02 02 .
L p +2 A
- o A B C D a . =
x1: normal




Exercise: LHS Sampling
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Your boss announces that she can get a great
deal on coat hooks from a local machine shop
that happens to be owned by her brother-

law. He unfortunately is not a very good
machinist, but insists that the dimensions of
most of the parts he makes are within 10% of
what was requested.

Based on a design you developed earlier to
support a 350 Ib. horizontal loaX)(and

500 Ib. vertical loadY), your boss proposes
that the hooksbe 5 in. longl(), 2 in. wide

(w), and 2 in. thicktj.




Exercise: LHSampling
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Puttngasi de for the moment the ethical C (
obvious conflict of interest, create a sampling study in Dakota to address these
guestions using Cantilever Physics:

A Determine the variability in stress and displacement that 10% error in the

dimensions (L, w, and t) can be expected to produce.
A Hint 1: Produce plots of these responses vs. probability levels, i.e. cumulative distribution

functions (CDFs).
A Hint 2: Assume hook dimensions are normally distributed. Use the specified dimensions as
the means and 10% of the specified dimensions as standard deviations.

A Your boss previously stipulated that the stress and displacement under
load be no greater than 100,000 psi and 0.001 in., respectively. What
fraction of the coat hooks produced by her brother-in-law can be expected

to violate these constraints?
A Hint: These can be read off of the CDFs, but Dakota can also estimate them for you.

Assume t hat Yo kEnse®er psnand density gp) i 500 Ib/ft3.

Exercise materials located in ~/exercises/ uncertainty analysis /1




Exercise Questions m
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A Where do you find the relevant Dakota output?
A What statistical quantities do you find in the output?

A Group AWhat happens if you increase/decrease the number
of samples?

A Group BWhat happens if you change the uncertainty
characterization of one or more variables?




Percent

Observations

Probability Plot of L
MNormal - 95% CI

399
Mea 5.000
StDev  0.5014

2 N 400
AD 0007

35 P-Value 1000
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Probability plotcreated in Minitab
show how well the Dakotgenerated
sample data follow an assumed
distribution (in this case normal)

Percent
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y variables are

ormally distributed.
52SayQid GKIF
my responses will be,
t00? .

C

Probability Plot of displacement
Mormal - 95% CI

. Mesn  0.0007345
& b StDev  0.0003198
*

M 400
, AD 6323

P-Value <0005

0.0000

0.0005 0.0010 0.0015 0.0020 0.0025
displacement




A Practical Process for UQ m
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1. Determine your UQ analysis goal
A What are the key model responses (quantities of interest)
A What kinds of statistics or metrics do you want on them?
2. ldentify potentially influential uncertain input parameters

A Includes parameters that influence trend in response as well as those that influence
variability in response

3. Characterize input uncertainties and map them into Dakota variable
specifications

4. \What are the model characteristics/behaviors? Recall: covered in

A Simulation cost, model robustness, input/output properties such as kmkcs)ther modules

discontinuities, mulitmodal, noise, disparateegimes
5. Select a method appropriate to variables, goal, and problem
6. Set up Dakota input file and interface to simulation

7. Run study and interpret the results

~

Based on variablegnalysis goald; Y R LINR LISNII A S & asSt SOl




Selecting a UQ Method
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Consider variable characterizations, model properties, ultimate
UQ goal to choose a method

Sampling (Monte Carlo, LHS) Reliability
A Robust, understandable, and A Goaloriented; target particular
applicable to most any model response or probability levels
A Slow to converge A Efficient local (require derivatives) /
A Moments, PDF/CDEprrelations, , global variants
min/max A Moments, PDF/CDEnportance
factors
Stochastic Expansions Epistemic
A Surrogate models tailored to UQ for A Non-probabilistic methods
~ continuous variables A Generally applicable, can be costly
A Highlyefficient forsmooth model when no surrogate
~ responses A Belief/plausibility, intervals,
A Moments, PDF/CDKBobolindices probability of frequency




Reliability Methods:
What Are They? rh) i

A Goaloriented methodghat focus on regions of probability or response
space of interest, for example:
A What temperature is achieved with 99% probability?

A What is the probability of exceeding, ..
A Naive sampling can be ineffective / undesolved
A Run 10,000 samples, only 5 are in relevant region ST

A Need to specify to Dakota Teritica

A Probability or response threshold(s) of interest using
probability levels , response_levels

A Method choice
A Meanvalue:best for linear problems, normally distributed parameters, efficient derivatives;
specifylocal_reliability (with nompp_search)
A MPP:computes most probablpoint of failure when failure boundary is near linear or
guadratic; specifyocal_reliability (with an mpp_search option)

A Adaptive computes probability of failure for complicated failure boundaries; specify
global_reliability




Reliability Methods:
How Do They Work?

A Reliabilitymethods tryto directly
calculate statistics of interest:
A Make simplifying approximations and/or

A Recast the UQ as an iterative procedure, such
asiterativelyrefined sampling or as a
nonlinearlyconstrainedoptimizationproblem

failure
region

safe
region
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Meanvalue:uses derivatives; mala
linearity (and possibly normality)
assumption angbroject

m =T(m)
e . . dg . dg
ST_a?COV“(I'J)du (/73)Oluj (m)

MPP:solve an optimization problem to

directly determine input values giving

rise to most probable point of failure
minimize u'u
subject to T(u)=T,

ritical

Adaptive iteratively refine
understanding of failure region

exploit

explore




